Two-dimensional study of a layered intrusion — the Hyllingen Series, Norway

Author:

Wilson J. Richard,Larsen S. Brink

Abstract

AbstractThe Hyllingen Series, comprising the southern part of the 160 km2 Caledonian, synorogenic, layered, mafic Fongen-Hyllingen intrusion, southeast of Trondheim, Norway, crystallized from a basaltic parent magma at 5–6 kb. Well developed modal layering strikes directly towards the magma chamber wall at the southern margin. The lithologies of inclusions match those of the adjacent country rock envelope. Eleven sample profiles (274 samples; over 1000 mineral analyses) allow the Hyllingen Series to be subdivided into four stages which generally decrease in thickness from north to south. A sporadically developed Stage I (< 100 m thick) of mostly unlayered ferrodiorites with relatively evolved compositions occurs at the base. Stage II (400–1500m) consists of layered, broadly ferrodioritic rocks. Modal layering is undisturbed by numerous, plate-like, metabasaltic inclusions which occupy about 22% of Stage II. Cryptic variation is slight except at the top where more evolved compositions are developed. Stage III (350–550 m) has fewer inclusions and is characterized by a gradual regression to more primitive compositions. Stage IV (800–2300 m) shows normal fractionation patterns, and a few minor reversals, with extremely evolved rocks in contact with the roof. Occasional metapelitic, platy inclusions occur near the southern margin.The rocks gradually become more evolved along the strike of modal layering towards the southern margin. Olivine and plagioclase vary systematically over about 7 km from Fo23:An46 to Fo7:An35 along the Stage II/III boundary and from Fo75:An63 to Fo13:An42 along the Stage III/IV boundary. While the apparent angle of discordance between modal and cryptic layering is usually less than 20°, in Stage IV near the wall of the magma chamber they are highly discordant (approaching 90°) over a thickness of about 900 m.In situ crystallization along an inclined floor took place from magma which became stratified by double-diffusive convection during Stage II. Modal layering developed concordant with the crystallization front while cryptic layering developed essentially parallel to the liquid stratification. Gradual influx of dense hot primitive magma caused elevation of the stratified magma column in Stage III. During this uplift, progressively more primitive liquid came into contact with earlier crystalline products along the inclined crystallization front. Crystallization during uplift of the magma column gave rise to the gradual regression of Stage III. Highly discordant modal/cryptic layering relations in Stage IV require that the magma became zoned with a horizontal, as well as a vertical, component. This may have occurred in response to lateral cooling establishing horizontal thermal gradients within individual magma layers, the resulting tendency towards density increase being compensated by material diffusion to more evolved compositions.The original roof during the early period of magma chamber evolution is possibly among the inclusions in Stage II. Repeated magma addition during Stage II resulted in the top magma layer having an extremely evolved composition. During the later stages this buoyant, evolved liquid ultimately crystallized to produce the quartz-bearing syenite in contact with the roof.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3