Late Precambrian glacial climate and the Earth's obliquity

Author:

Williams G. E.

Abstract

SummaryLate Precambrian (∼ 750±200 Ma) glaciogenic sequences exhibit substantial evidence for marked climatic inequability of seasonal and longer periodicity (10° to ∼ 106yrs): (1) tillites are closely associated with dolomites, limestones and evaporites apparently of warm-water origin; (2) tillites occur with red beds and iron-formations whose iron probably was derived ultimately from lateritic weathering; (3) glacial dropstones occur locally within carbonates and iron-formations; (4) laminae, interpreted asvarvesby many workers, are common in argillites, carbonates and iron-formations; and (5) permafrost structures attributable to repeated seasonal changes of temperature are locally abundant. Such climatic, particularlyseasonalinequability apparently conflicts however with the probable low (≲30°) palaeolatitudes of deposition of numerous late Precambrian glaciogenic sequences.The contradictions presented by such sequences may be resolved by postulating a considerably increased obliquity of the ecliptic (ε) in late Precambrian time. Substantial increase in e would: (1) greatly amplify global seasonality; (2) weaken climatic zonation, thus allowing warm-water sedimentation and lateritic weathering over wide latitudes; and (3) increase the ratio of radiation received annually at either pole to that received at the equator, so when 54° < ε < 126° low and middle latitudes (≤ 43°) would be glaciated in preference to the poles. Ice sheets and permafrost thus can be envisaged principally in low and middle latitudes with contiguous warm-water and iron-rich facies under a markedly seasonal climate. The concept of secular change of e is supported by other geological evidence.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference145 articles.

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3