Mesozoic volcanism in the Middle East: geochemical, isotopic and petrogenetic evolution of extension-related alkali basalts from central Lebanon

Author:

ABDEL-RAHMAN ABDEL-FATTAH M.

Abstract

Mesozoic picritic and alkali basalts from central Lebanon represent a significant part of an extension-related Upper Jurassic to Upper Cretaceous discontinuous volcanic belt which occurs throughout the Middle East. Volcanism was associated with an episode of intraplate extension that followed a period of continental break-up, where Mesozoic micro-continental blocks separated from Gondwana as the Neotethys ocean opened in Jurassic times. This volcanic episode produced mafic lava flows ranging in thickness from 5 to 20 m, along with some minor pyroclastic flows. These flows are stratigraphically intercalated with thick carbonate platform deposits. The basalts are made up of about 15–20% olivine (Fo78–91), 30–35% clinopyroxene (salite), 40–50% plagioclase (An56–71) and opaque Fe–Ti oxides (∼5%). Geochemically, the rocks exhibit a relatively wide range of SiO2 (40.4 to 50.5 wt%) and MgO (5.1 to 15.5 wt%) contents, are relatively enriched in TiO2 (1.7 to 3.7 wt%) and vary in composition from alkali picrite and basanite to alkali basalt. The Mg numbers range from 0.56 to 0.70, with an average of 0.63. The rocks are enriched in incompatible trace elements such as Zr (86–247 ppm), Nb (16–66 ppm) and Y (19–30 ppm). Such compositions are typical of those of HIMU-OIB and plume-related magmas. The REE patterns are fractionated ((La/Yb)N = 11), LREE enriched, and are generally parallel to subparallel. Elemental ratios such as K/P (1.1–4.7), La/Ta (11–13), La/Nb (0.57–0.70), Nb/Y (0.68–1.55) and Th/Nb (0.20–0.36) suggest that crustal contamination was minor or absent. This may be related to a rapid ascent of the magma, in agreement with the nature (mafic, oceanic-like) and the small thickness (about 12 km) of the Mesozoic crust of the Eastern Mediterranean region. The 143Nd/144Nd isotopic compositions of the lavas range from 0.512826 to 0.512886, and 87Sr/86Sr from 0.702971 to 0.703669, suggesting a HIMU-like mantle source. Trace element compositions indicate a melt segregation depth of 100–110 km, well within the garnet lherzolite stability field. The geochemical characteristics of the rocks are typical of within-plate alkali basalts, and suggest that the magmas were derived from a fertile, possibly plume-related, enriched mantle source. Petrogenetic modelling indicates that the magmas were produced by very small degrees of batch partial melting (F = 1.5%) of a primitive garnet-bearing mantle source (garnet lherzolite).

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3