Impact of harmful algal blooms (Dinophysis acuminata) on the immune system of oysters and mussels from Santa Catarina, Brazil

Author:

Simões Erik,Vieira Renato Campos,Schramm Mathias Alberto,Mello Danielle Ferraz,De Almeida Pontinha Vitor,da Silva Patrícia Mirella,Barracco Margherita Anna

Abstract

Blooms of the harmful alga Dinophysis acuminata, which produces okadaic acid (OA), are becoming recurrent in Santa Catarina coast, where most of the shellfish marine farms in Brazil are located. We evaluated the impact of D. acuminata blooms on various haemato-immunological parameters and on tissue integrity of cultivated oysters (Crassostrea gigas) and mussels (Perna perna). Animals were sampled during two natural algal blooms, one at Praia Alegre (PA: 2950 cells l−1) and the other at Praia de Zimbros (PZ: 4150 cells l−1). Control animals were sampled at the same sites, 30 days after the end of the bloom. The assayed parameters were: total (THC) and differential (DHC) haemocyte counts, percentage of apoptotic haemocytes (AH), phenoloxidase activity (PO), agglutinating titre (AT) and total protein concentration in haemolymph (PC). Histological analyses were carried out in oysters from PZ. The results showed that some immune parameters were modulated during the toxic blooms, but not in a consistent manner, especially in mussels that accumulated more OA (10×) than oysters. For example, mussel THC decreased significantly (54%) during the bloom at PA, whereas it augmented markedly (64%) at PZ. PO activity was significantly altered by the algal blooms in both bivalve species, while PC increased significantly (66%) only in mussels from PZ bloom. The other parameters (DHC, AH and AT) did not vary in both bivalve species. Histological analyses showed an intense haemocytic infiltration throughout the oyster digestive epithelium, particularly into the stomach lumen during the algal bloom.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3