Temporal patterns of phytoplankton assemblages, size spectra and diversity during the wane of aPhaeocystis globosaspring bloom in hydrologically contrasted coastal waters

Author:

Schapira Mathilde,Vincent Dorothee,Gentilhomme Valerie,Seuront Laurent

Abstract

The space–time dynamic of phytoplankton diversity and succession was investigated during the wane of aPhaeocystis globosaspring bloom in four distinct hydrological sub-systems of the eastern English Channel. Nutrients, chlorophyll-a concentrations, and phytoplankton composition, standing stocks, size spectra and diversity were monitored during three key periods in 2003: late spring, early summer and summer. Two consecutive diatom assemblages were observed, respectively dominated by: (i) small colonial species (<100 μm;Melosirasp.,Diploneissp. andNavicula transitans) in April; and (ii) large fine-walled cells (>200 μm;Guinardia striataandRhizosolenia imbricata) in May and July. This shift in diatom composition appeared to be related to the potentially limitating silicic acid in early summer. Specific phytoplankton assemblages identified in distinct water masses have evolved from a mature/senescent community towards a relatively homogeneous aestival structure of dominant species that might have been triggered by the wane of theP. globosabloom. Our results also identified a strong heterogeneity in the distribution of secondary species between distinct water masses during the summer period, suggesting that the magnitude of the observed patterns was intrinsically related to the hydrological properties prevailing in each sub-system. The identification of distinct temporal patterns in phytoplankton species diversity and succession following the wane of a spring bloom at relatively small spatial scales (i.e. <10 km) is discussed in the framework ofP. globosablooms in particular and phytoplankton blooms in general and is suggested to have potentially strong consequences on food web dynamics and the carbon cycle in coastal ecosystems.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3