Morph-specific habitat and sex distribution in the caridean shrimpHippolyte obliquimanus

Author:

Duarte Rafael C.ORCID,Flores Augusto A.V.ORCID

Abstract

Polymorphism may allow individuals to expand habitat use through morph-specific resource demands. However, the underlying mechanisms maintaining different morphotypes in nature are difficult to identify. We sampled populations of the shrimpHippolyte obliquimanusin the macroalgaeSargassum furcatumandGalaxaura marginatato examine morph-specific distribution patterns, population structure and female reproductive output, as an initial step to understand polymorphism in this species. Two main colour morphotypes were identified: homogeneous shrimps (H), which change their colour, mostly from pink to greenish-brown tones, and striped translucent shrimps (ST), whose colour remain unaltered. Distribution of individuals between habitats was clearly morph-specific. H shrimps occupied colour-matching substrates, mainlySargassum, where they can attain large densities, and ST individuals were evenly distributed in both algae. Brood production and size-fecundity relationships were similar between morphs and habitats, suggesting these are relatively fixed traits in the population. However, sex proportions, defined as the male to female ratio, were different between morphs and macroalgae. H shrimps were chiefly females (1:2.04) and ST shrimps mostly males (1:0.30). Given the likely polygynic pure-search mating system inH. obliquimanus, the female-biased sex ratio observed inSargassumis apparently more advantageous than the Mendelian proportion found inGalaxaurahabitat. Clustering on vegetated habitat, the female-biased H morph may be relatively cryptic and sedentary, compared with the male-biased ST morph which apparently combines a more neutral camouflage strategy to a generalized habitat use. Altogether, results suggest that selection for sex-specific traits favours the maintenance of polymorphism inH. obliquimanus.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3