Size structure and pigment composition of phytoplankton communities in different hydrographic zones in Hong Kong's coastal seas

Author:

Tang Chi Hung,Wong Chong Kim,Lie Alle An Ying,Yung Ying Kit

Abstract

The abundance and community composition of phytoplankton are influenced by a suite of interacting environmental factors. Hong Kong's marine environment features a hydrographic gradient from an estuarine zone in the west to a transition zone in the middle and an oceanic zone in the east. Size fractionation combined with high performance liquid chromatography (HPLC) pigment analyses were used to investigate the phytoplankton communities in different hydrographic zones during summer (July–August 2009) and winter (December 2009–January 2010). Clear temporal and spatial variations in environmental parameters occurred among hydrographic zones. Results of principal component analysis (PCA) revealed that the major deviating factors among hydrographic zones were turbidity and salinity in summer and nitrate and phosphate in winter. Phytoplankton abundance showed significant temporal variations, but no zonal variations. Phytoplankton communities in all hydrographic zones were dominated by cells >5 µm in both summer and winter. Chlorophyll a concentrations for most size fractions correlated significantly with temperature. The high concentration of fucoxanthin indicated that the phytoplankton community was dominated by diatoms in both summer and winter, while dinoflagellates, cryptophytes, cyanobacteria and other minor groups occurred sporadically in low abundance. The spatial pattern of phytoplankton in Hong Kong's coastal seas did not reflect the hydrographic zonation, but the phytoplankton in the semi-enclosed Tolo Harbour and Deep Bay were different from those in the other zones.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3