The escal light gland of the deep-sea anglerfish Haplophryne mollis (Pisces: Ceratioidei) with observations on luminescence control

Author:

Herring Peter J.,Munk Ole

Abstract

The escal light gland of three different-sized specimens of the deep-sea anglerfish Haplophryne mollis (family Linophrynidae) has been examined by light and electron microscopy. The light gland has a central cavity, with diverging branched ducts which ramify into numerous tightly-packed radial tubules. In the two largest specimens all glandular lumina contain symbiotic bacteria. Except for a thin-walled part of the typical radiating tubules, the epithelial walls of the light gland are of a uniform structure, consisting of flattened basal cells, situated next to the basal lamina, and tall cells extending to the lumen.In the smallest specimen examined the various parts of the light gland were not fully differentiated and only a very few symbiotic bacteria were present; its glandular epithelium differed from that of the two larger specimens by containing many goblet cells, the secretion of which may be important for the initial establishment of the right strain of symbiotic bacteriaObservations on the luminescence of live specimens have shown that the light emission can be rapidly modulated from within the esca. The in vivo flash kinetics are considerably slower than those of Dolopichthys longicornis, but similar to those of both the caruncle exudate of Ceratias holboelli and in vitro anglerfish bacterial luciferase.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predator-Prey Interactions Through Heterogeneous Coverage Control Using Reaction-Diffusion Processes;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

2. Luminous fishes: Endocrine and neuronal regulation of bioluminescence;Aquaculture and Fisheries;2023-05

3. Bioluminescence and Pigments;Pigments, Pigment Cells and Pigment Patterns;2021

4. The Associations between Fishes and Luminescent Bacteria;Symbiosis in Fishes;2014-04-11

5. Luminous Bacteria;Journey to Diverse Microbial Worlds;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3