Sensitivity of buffaloes (Bubalus bubalis) to heat stress

Author:

Choudhary Bishwa Bhaskar,Sirohi Smita

Abstract

AbstractBased on ten years of data (2001–10), consisting of 12 673 observations on fortnightly milk yield of buffaloes reared in a dairy farm located in the Northern sub-tropics (29°41′0″N, 76°59′0″E), the present study establishes the relationship between weather conditions and production performance of lactating buffaloes. The critical threshold level of maximum temperature-humidity index (THI) was estimated to be 74, which is higher than that of crossbred cows. The duration of discomfort period for buffaloes begins in mid-March and lasts up to early November. During the aggravated stress condition (THI > 82) prevailing in the region for about 5 months starting from early May, milk productivity declines by more than 1% per unit increase in maximum THI over 82. The maximum temperature and minimum humidity (viz. maximum THI) are the most critical weather parameters causing thermal stress in animals, however, the climatic conditions in the region are such that not only maximum but also minimum THI crosses the critical threshold providing little relief to the animals during the night.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

Reference29 articles.

1. Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function

2. Impact of Climate change on Milk production of Murrah buffaloes

3. Variation of Milk, Fat, Protein, and Somatic Cells for Dairy Cattle

4. Heat stress and milk production in the first parity Holsteins – threshold determination in eastern Croatia

5. Choudhary BB (2017) Climate sensitivity of agriculture in trans and upper gangetic plains of India: Potential economic impact and vulnerability . Ph.D thesis, ICAR-National Dairy Research Institute, Karnal, Haryana.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3