The need for national livestock surveillance in Pakistan

Author:

Aamir Shahzad Muhammad

Abstract

AbstractRanked amongst the top five milk-producing countries globally, the Pakistan dairy industry can help to overcome food shortage and hunger, alleviate poverty and positively impact economic growth. This influencing role could potentially be more significant while the COVID-19 pandemic severely affects humanity, challenges the economy and increases the risk of global food shortage. However, its large national population of dairy livestock contrasts with Pakistan's top-five ranking, indeed, four to five Pakistani cows produce milk equivalent to one dairy cow of countries with a well-developed dairy industry. Low milk yield per cow negatively impacts the national production and compromises the development of an efficient processing sector, such that consumers are very often forced to use adulterated milk sold by local ‘milkmen.’ As a consequence, while committed to alleviating global hunger, Pakistan imports in excess of half a million tons of milk and milk-based products annually. Many studies have identified unproductive, inefficient and imprecise management issues combined with poor genetics and imbalanced nutrition as the leading barriers to improvement in the Pakistani dairy livestock sector. At an individual level, lack of awareness, affordability issues, illiteracy and low ambition of a large percentile of dairy farmers creates additional significant barriers. To address low productivity and poor genetics, Pakistani corporate farms and wealthier individual farmers import genetically improved breeds to attain high milk yields. However, they are then faced with the challenge of managing such breeds to attain sustainable and persistent milk yields under Pakistani climatic conditions, often risking excessive culling even to the point of business liquidation. In developed dairy industries, automated sensor-based livestock management systems are now available to help monitor, compute, and optimize procedures in real-time and are proven to increase productivity and profitability. The term precision livestock farming (PLF) is used to describe systems that monitor individual animals or groups of animals to overcome management deficiencies and optimize productivity. My stance in this Opinion Paper is that adopting and utilizing such precision technologies may support Pakistan in raising its livestock resources toward greater productivity, thereby helping to overcome the global food shortage.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

Reference40 articles.

1. Livestock production and population census in Pakistan: Determining their relationship with agricultural GDP using econometric analysis

2. If they don't tell us what they do with it, why would we trust them? Trust, transparency and benefit-sharing in smart farming;Jakku;NJAS-Wageningen Journal of Life Sciences,2019

3. FAO (2016) Development of integrated multipurpose animal recording systems. FAO Animal Production and Health Guidelines (no. 19). Available at http://www.fao.org/publications/card/en/c/42165eb1-d81c-4769-b2d3-27a6c5be5e1d/ (accessed 5 October 2020).

4. Capel, M (2020) Using DC 305 to help your clients achieve success. In American Association of Bovine Practitioners Proceedings of the Annual Conference, pp. 30–32.

5. Grothmann, A , Nydegger, F , Moritz, C and Bisaglia, C (2010) Automatic feeding systems for dairy cattle-potential for optimization in dairy farming. In International conference on agricultural engineering: towards environmental technologies.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3