Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks

Author:

Sun Zhibin,Samarasinghe Sandhya,Jago Jenny

Abstract

Two types of artificial neural networks, multilayer perceptron (MLP) and self-organizing feature map (SOM) were used to detect mastitis by automatic milking systems (AMS) using a new mastitis indicator that combined two previously reported indicators based on higher electrical conductivity (EC) and lower quarter yield (QY). Four MLPs with four combinations of inputs were developed to detect infected quarters. One input combination involved principal components (PC) adopted for addressing multi-collinearity in the data. The PC-based MLP model was superior to other non-PC-based models in terms of less complexity and higher predictive accuracy. The overall correct classification rate (CCR), sensitivity and specificity of this model were 90·74%, 86·90% and 91·36%, respectively. The SOM detected the stage of progression of mastitis in a quarter within the mastitis spectrum and revealed that quarters form three clusters: healthy, moderately ill and severely ill. The clusters were validated using k-means clustering, ANOVA and least significant difference. Clusters reflected the characteristics of healthy and subclinical and clinical mastitis, respectively. We conclude that the PC based model based on EC and QY can be used in AMS to detect mastitis with high accuracy and that the SOM model can be used to monitor the health status of the herd for early intervention and possible treatment.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3