A novel minimal model to describe non-esterified fatty acid kinetics in Holstein dairy cows

Author:

Boston Raymond C,Roche John R,Ward Glen M,Moate Peter J

Abstract

The dynamics of non-esterified fatty acid (NEFA) metabolism in lactating dairy cows requires quantification if we are to understand how dietary treatments and disease influence changes in body condition (adipose reserves) and the production of milk fat. We present here a novel compartmental model that employs the pattern of plasma glucose concentrations to predict the dynamic changes that occur in plasma NEFA concentrations during an intravenous glucose tolerance test (IVGTT) in lactating dairy cows. The model was developed using data obtained from ten early-lactation, Holstein-Friesian cows given a standard IVGTT. The model described all of the major features of the NEFA response to an IVGTT; it was consistent with physiological processes and provided a number of parameters that can be used to quantify NEFA production and utilization. For all of the individual cows, all model parameters were well identified and usually had CV<10% of their estimated values. In the model, elevated plasma glucose concentrations cause an increase in the level of glucose in a remote compartment, which in turn suppresses the rate of entry of NEFA to the plasma compartment. The means (±sd) for the five adjustable parameters of the model were: rate of entry of NEFA to the plasma pool (SFFA) 183±71 [μmol l−1 min−1], rate of removal (oxidation, sequestration in adipose tissue and uptake by the mammary gland for milk production) of NEFA from the plasma pool (KFFA) 0·140±0·047 [min−1], a threshold parameter (gs) representing a plasma glucose concentration above which elevated levels of plasma glucose result in entry of glucose into a ‘remote’ or inaccessible glucose compartment, 3·30±0·52 [mmol/l], a rate constant (K) describing the movement of plasma glucose (above gs) into a remote compartment 0·063±0·033 [min−1] and a parameter Φ which is a Michaelis Menten type affinity constant which modulates the extent to which remote glucose inhibits the provision of NEFA to the plasma pool, 0·812±0·276 [mmol/l]. It is concluded that the model is suitable to describe NEFA kinetics in lactating dairy cows and it may have application in other species.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3