Evaluation of cooling strategies for pumping of milk – Impact of fatty acid composition on free fatty acid levels

Author:

Wiking Lars,Bertram Hanne C,Björck Lennart,Nielsen Jacob H

Abstract

Cooling strategies for pumping of raw milk were evaluated. Milk was pumped for 450 s at 31 °C, or pumped after cooling to 4 °C and subsequently subjected to various incubation times. Two types of milk were used; i.e. milk from cows fed a diet high in saturated fat supplements resulting in significantly larger milk fat globules than the other type of milk which comes from cows fed a low-fat diet that stimulates high de novo fat synthesis. The content of liquid fat was determined by low-field 1H NMR, which showed that milk from cows given the saturated fat diet also contained less liquid fat at both 4 ° and 31 °C than the other type of milk. This can be ascribed to the differences in the fatty acid composition of the milk as a result of the fatty acid composition of the diets. After pumping of the milk at 31 °C, measurement of fat globule size distribution revealed a significant coalescence of milk fat globules in the milk obtained from the saturated fat diet due to pumping. Pumping at 4 °C or pumping the other type of milk did not result in coalescence of milk fat globules. Formation of free fatty acids increased significantly in both types of milk by pumping at 31 °C. Cooling the milk to 4 °C immediately before pumping inhibited an increased content of free fatty acids. However, when the milk was incubated at 4 °C for 60 min after cooling and then subjected to pumping, a significant increase in the formation of free fatty acids was observed in both types of milk. It is suggested that this increase in free fatty acids is caused by transition of polymorphic crystal forms or higher level of attached lipoprotein lipases to the milk fat globule before pumping.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3