An optical soft-sensor based shape sensing using a bio-inspired pattern recognition technique to realise fly-by-feel capability for intelligent aircraft operation

Author:

Basu M.ORCID,Ghorai S. K.

Abstract

ABSTRACTInformation regarding deformations in large and complex systems is necessary in the prediction of structural failures caused by un-natural flexural occurrences. Sensing systems which are used to predict shapes, in order to develop a global surface picture require high precision and lower time lag. In this work, a unique bio-inspired training mechanism for support vector regression is presented for shape sensing in structures mounted with Fiber Bragg Gratings. Experimental validation was carried out on a simply supported beam, loaded at different positions and an aircraft wing model for different types of bending. The resulting deflections at specified locations along the length of the beam and on both surfaces of the wing were interpreted from the wavelength shifts of the corresponding Fiber Bragg Gratings through the specially modified Support Vector Regression. The method has shown high accuracy, low computational requirements and enhanced prediction times. The proposed bio-inspired training method has also been compared with two conventional training methodologies.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3