Adaptive aerial ecosystem framework to support tactical conflict resolution

Author:

Radanovic M.ORCID,Piera M.A.,Koca T.

Abstract

ABSTRACTTo support a seamless transition between safety net layers in air traffic management, this article examines an extra capacity in the generation of the resolution trajectories, conditioned by future high dense, complex surrounding air traffic scenarios. The aerial ecosystem framework consists of a set of aircraft services inside a digitalised airspace volume, in which amended trajectories could induce a set of safety events such as an induced collision. Those aircraft services strive to the formation of a cost-efficient airborne separation management by exploring the preferred resolutions and actively interacting with each other. This study focuses on the dynamic analysis of a decreasing rate in the number of available resolutions, as well as the ecosystem deadlock event from the identified spatiotemporal interdependencies among the ecosystem aircraft at the separation management level. A deadlock event is characterised by a time instant at which an induced collision could emerge as an effect of an ecosystem aircraft trajectory amendment. Through simulations of two generated ecosystems, extracted from a real traffic scenario, the paper illustrates the relevant properties inside the structure of the ecosystem interdependencies, demonstrates and discusses an available time capacity for the resolution process of the aerial ecosystem.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3