Abstract
ABSTRACTA new aerofoil parameterisation method is put forward to represent an aerofoil by combining the leading edge modification class/shape function transformation (LEM CST) method and improved Hicks–Henne bump function’s method. The new class/shape function transformation (NEW CST) method has two additional basis functions comparing the original CST method. In order to confirm these two basis functions, the radial basis functions neural network (RBF) model is trained by some samples which are generated by the Latin hypercube design (LHD) method and Genetic Algorithm (GA) is proposed to achieve the basis functions of the NEW CST method. The NEW CST method has been evaluated in fitting precision of 1,545 aerofoils by comparison with the LEM CST method and the original CST method. And the improved ability of the NEW CST at the leading edge and trailing edge is verified by a series of complex aerofoil case studies within 1,545 aerofoils. The results indicate that the NEW CST method can represent the whole aerofoils and possesses the intuitive property as well as the original CST. Moreover, the number of control parameters (NCP) to parameterise aerofoils is the fewest among these three methods. Furthermore, when the NCP of the NEW CST and LEM CST is the same, the NEW CST method has the higher accuracy and smaller root mean square errors (RMSE) especially at the leading edge and trailing edge.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献