Abstract
ABSTRACTDetailed numerical simulations have been carried out on a spiked blunt body with multiple hemispherical disks using a commercial CFD code in order to investigate their effectiveness in reducing the aerodynamic drag and heating. The base configuration is a hemispherical cylinder whose diameter is 40 mm with an overall length of 70 mm. The lengths of the aerospikes investigated are 1, 1.5, 2 and 2.5 times the base diameter of the cylinder and the radii of the aerodisks are varied between 0.05, 0.1, 0.15 and 0.2 times the diameter of the cylinder. Besides these, the position of the aerodisks is varied with the rearmost aerodisk placed at 25%, 50% and 75% along the length of the aerospike and the intermediate aerodisk for three-disk cases, positioned at 25%, 50% and 75% of the distance between the front and the rearmost disk. All the investigations have carried out at a freestream Mach number of 6.2 and Reynolds number of 2.64 × 107/m. It has been observed that the multidisk spikes are advantageous for the purpose of reduction of both aerodynamic drag and heating at hypersonic speed. The two aerodisk spiked configurations show better results in terms of aerodynamic heating and drag in comparison to the single-disk aerospikes while the three-disk spikes yield only a marginal reduction in aerodynamic drag over the two-disk configurations. For reduction of heat fluxes and heat transfer rates though, the three-disk configurations are extremely advantageous and give much larger reductions are compared to the two-disk configurations.
Publisher
Cambridge University Press (CUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献