Enhancement of disturbance wave amplification due to the intrinsic three-dimensionalisation of laminar separation bubbles

Author:

Rodríguez D.ORCID,Gennaro E. M.

Abstract

ABSTRACTPrevious studies demonstrated that laminar separation bubbles (LSBs) in the absence of external disturbances or forcing are intrinsically unstable with respect to a three-dimensional instability of centrifugal nature. This instability produces topological modifications of the recirculation region with the introduction of streamwise vorticity in an otherwise purely two-dimensional time-averaged flows. Concurrently, the existence of spanwise inhomogeneities in LSBs have been reported in experiments in which the amplification of convective instability waves dominates the physics. The co-existence of the two instability mechanisms is investigated herein by means of three-dimensional parabolised stability equations. The spanwise waviness of the LSB on account of the primary instability is found to modify the amplification of incoming disturbance waves in the linear regime, resulting in a remarkable enhancement of the amplitude growth and a three-dimensional arrangement of the disturbance waves in the aft portion of the bubble. Present findings suggest that the oblique transition scenario should be expected in LSBs dominated by the convective instability, unless high-amplitude disturbances are imposed.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference37 articles.

1. The two classes of primary modal instability in laminar separation bubbles

2. Absolute and convective instabilities in free shear layers

3. The final stages of transition and the reattachment region in transitional separation bubbles

4. 35. Henk R.W. , Reynolds W.C. and Reed H.L. An experimental investigation of the fluid mechanics of an unsteady, three-dimensional separation. Technical Rep. TF-49, Department of Mechanical Engineering, Stanford University, 1990.

5. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3