Reacting flow analysis of a cavity-based scramjet combustor using a Jacobian-free Newton–Krylov method

Author:

Rouzbar R.,Eyi S.

Abstract

ABSTRACTThe scramjet is a rather a new technology and there are many issues related to their operation, especially when it comes to the combustion processes. Combustion in high-speed flows causes various problems such as flame instability and poor fuel–air mixing efficiency. One of the methods used to overcome these problems is to recess a cavity in the combustor wall where a secondary flow is generated. In this study, a computational fluid dynamics (CFD) code is developed to analyse the reacting flow passing through the cavity-based scramjet combustor. The developed code is based on three-dimensional coupled Navier–Stokes and finite rate chemistry equations. An ethylene-air reduced chemical reaction model is used as a fuel–air combination. The Spalart–Allmaras model is utilised for turbulence closure. The non-dimensional form of the flow and chemical reaction equations are discretised using a finite volume method. The Jacobian-Free Newton–Krylov (JFNK) method is used to solve the coupled system of non-linear equations. The JFNK is a matrix-free solution method which improves the computational cost of Newton’s method. The parameters that affect the performance of the JFNK method are studied in the analysis of a scramjet combustor. The influence of the forcing term on the convergence of the JFNK method is studied in the analysis of scramjet combustor. Different upwind flux vector splitting methods are utilised. Various flux limiter techniques are employed for the calculations of higher order flux vectors. The effects of flux vector splitting and flux limiter methods on the convergence and accuracy of the JFNK method are evaluated. Moreover, the variations of the mixing efficiency with fuel injection angles are studied.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3