Author:
Mou H. L.,Su X.,Xie J.,Feng Z. Y.
Abstract
ABSTRACTThis paper aims to build the finite element model of the composite sinusoidal specimens and to carry out the parametric analysis. In this paper, the damage behaviour and the energy-absorbing results of composite sinusoidal specimens have been studied by quasi-static crushing experiments. The failure mechanisms of specimens under quasi-static crushing is further analysed. A numerical simulation has been performed by using the finite element model code LS-DYNA. The numerical results, in terms of load -displacement data, have been compared against experimental data, and good agreement has been found. Moreover, a sensitivity study has been carried out by varying material properties in order to assess their influence on the numerical results, and the material parameter selection scheme is optimised based on the constructed corresponding response surfaces. The results show that the response surface model has passed the test of goodness of fit, and the optimisation method can effectively assist the finite element modelling, and greatly decrease the numbers of trial and error.
Publisher
Cambridge University Press (CUP)
Reference46 articles.
1. Terry J.E. , Hooper S.J. and Nicholson M. Design and test of an improved crashworthiness small composite airplane, NASA/CR-2002-211774, NASA, Washington, DC, 2002, pp 1–228. https://ntrs.nasa.gov/search.jsp?R=20020068132.
2. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations
3. Ilcewicz L.B. and Brian M. Safety & certification initiatives for composite airframe structure, 46th AIAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics & Materials Conference, 18-21 April 2005, Austin, Texas, US.
4. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen
5. A User Defined Material Model for the Simulation of Impact Induced Damage in Composite
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献