Abstract
AbstractLet R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module
$\omega _R$
. The trace of
$\omega _R$
is the ideal
$\operatorname {tr}(\omega _R)$
of R which is the sum of those ideals
$\varphi (\omega _R)$
with
${\varphi \in \operatorname {Hom}_R(\omega _R,R)}$
. The smallest number s for which there exist
$\varphi _1, \ldots , \varphi _s \in \operatorname {Hom}_R(\omega _R,R)$
with
$\operatorname {tr}(\omega _R)=\varphi _1(\omega _R) + \cdots + \varphi _s(\omega _R)$
is called the Teter number of R. We say that R is of Teter type if
$s = 1$
. It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献