Artificial intelligence for early detection of renal cancer in computed tomography: A review

Author:

McGough William C.ORCID,Sanchez Lorena E.,McCague Cathal,Stewart Grant D.,Schönlieb Carola-Bibiane,Sala Evis,Crispin-Ortuzar MireiaORCID

Abstract

Abstract Renal cancer is responsible for over 100,000 yearly deaths and is principally discovered in computed tomography (CT) scans of the abdomen. CT screening would likely increase the rate of early renal cancer detection, and improve general survival rates, but it is expected to have a prohibitively high financial cost. Given recent advances in artificial intelligence (AI), it may be possible to reduce the cost of CT analysis and enable CT screening by automating the radiological tasks that constitute the early renal cancer detection pipeline. This review seeks to facilitate further interdisciplinary research in early renal cancer detection by summarising our current knowledge across AI, radiology, and oncology and suggesting useful directions for future novel work. Initially, this review discusses existing approaches in automated renal cancer diagnosis, and methods across broader AI research, to summarise the existing state of AI cancer analysis. Then, this review matches these methods to the unique constraints of early renal cancer detection and proposes promising directions for future research that may enable AI-based early renal cancer detection via CT screening. The primary targets of this review are clinicians with an interest in AI and data scientists with an interest in the early detection of cancer.

Publisher

Cambridge University Press (CUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Small Kidney Cancer Detection in Non-Contrast Computed Tomography;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

2. Experimental Evaluation in Identification of Kidney Cancer using Modified Learning Scheme;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

3. Experimental Evaluation in Identification of Kidney Cancer using Modified Learning Scheme;2024

4. Introducing Cambridge prisms: Precision medicine;Cambridge Prisms: Precision Medicine;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3