Experimental Evidence for Aggregation of Salmon Louse Copepodids (Lepeophtheirus Salmonis) in Step Salinity Gradients

Author:

Andreas Heuch Peter

Abstract

The copepod Lepeophtheirus salmonis Krayer (Copepoda: Caligida), the salmon louse, is a parasite of salmonids. The vertical distribution of the infective stage, the copepodid, was studied in salinity gradients with one step increase of 15‰ (154%e> on top of 304‰), 5‰ (25–4‰ on top of 30–4‰) and 2%> (28–4‰ on top of 304‰) in 1-m perspex columns. Copepodid distribution in a linear gradient, where the salinity increased from 154‰ at 0 cm depth to 304‰ at 87–5 cm, was also recorded. Homogeneous 304‰ salinity columns served as the control. In these, the animals gathered in the top section of the water column in response to 1 h of light from above, and spread downwards in response to 4 h of darkness. In columns with a 15‰ step increase in salinity with depth, copepodids aggregated just underneath the discontinuity irrespective of light conditions. In step salinity gradients of 5‰ and 2‰ S, under both light regimes, animals were significantly more numerous in the step sections compared with the control. In the linear gradient, significant numbers of copepodids accumulated at approximately 20‰ salinity when subjected to 1 h of light. In the dark, there were no significant aggregations. Copepodids were found in 15–17–2‰ salinity in all linear gradient experiments.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Reference33 articles.

1. Food search behaviour in fish and the use of chemical lures in commercial and sports fishing

2. LARVAL DEVELOPMENT OF PAGURUS LONGICARPUS SAY REARED IN THE LABORATORY. III. BEHAVIORAL RESPONSES TO SALINITY DISCONTINUITIES

3. Heuch P.A. , Parsons A. & Boxaspen K. , in press. Diel vertical migration - a possible host-finding mechanism in salmon louse (Lepeophtheirus salmonis) copepodids?Canadian Journal of Fisheries and Aquatic Sciences.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3