Biomasss and microzooplankton seasonal assemblages in the Bahía Blanca Estuary, Argentinean Coast

Author:

Barría de Cao M.S.,Piccolo M.C.,Perillo G.M.

Abstract

We investigated the occurrence and seasonal variation of the biomass of rotifers, tintinnids, the heterotrophic dinoflagellate Gyrodinium fusus and copepod nauplii in the Bahía Blanca Estuary (38°42′S61°50 ′W), Argentina, during an annual cycle. The rotifers fauna comprised three species, while the tintinnids were represented by sixteen species. The biomass of the rotifers fluctuated between 0.62 and 8.90 µgC l−1. The biomass of the tintinnids fluctuated between 0.13 and 9.37 µgC l−1, the biomass of the nauplii stages between 1.78 and 7.65 µgC l−1; while the biomass of G. fusus varied from 0.26 and 7.94 µgC l−1, these results are compared to estimates of microzooplankton in other regions. We analysed the presence of the different groups in relation to the environmental variables, based on point-biserial correlation. Salinity fluctuated between 25.14 and 36.64; temperature between 7.5 and 23.2°C, solar radiation between 0.9 and 30.8 MJ m−2d−1 and Secchi distance between 0.25 and 1.43 m. Rotifers were correlated positively with temperature, chlorophyll-a and Secchi depth and negatively with salinity. The tintinnids were positively correlated with salinity. Gyrodinium fusus was positively correlated with Secchi depth, and chlorophyll-a, and negatively with temperature and solar radiation. Nauplii stages were negatively correlated with chlorophyll-a. Based on the occurrence of the microzooplankters in relation to the physico-chemical variables, it was possible to establish two seasonal assemblages: (a) the co-occurrence of the rotifers and the heterotrophic dinoflagellate G. fusus during the winter–spring; and (b) the tintinnids and nauplii larvae during the summer. We conclude that, in this estuary, physico-chemical variables are the forcing factors that directly, or indirectly, influence the seasonal assemblages of the microzooplankton.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3