Structure and Physiology of the Organs of Feeding and Digestion inOstrea edulis

Author:

Yonge C. M.

Abstract

The anatomy and histology of the food collecting and alimentary organs of the adult oyster are described.The anatomy of the stomach is investigated with the aid of gelatin casts and attention drawn to the food caecum, the ventral groove, and the two ducts of the digestive diverticula.Cilia and mucus glands are universal throughout the food collecting and alimentary organs.There is evidence that the gastric shield is composed of fused cilia.The histology of the style-sac resembles that described by Mackintosh for Crepidula. There is evidence that secretion of the style takes place in the groove.Phagocytes are everywhere numerous in the blood vessels, connective tissue and epithelia, and free in the gut and mantle cavity.The alimentary organs of the larva are described.The anatomy and histology of these organs in the spat isdescribed, the palps are relatively large and the gills asymmetrical. The style-sac is distinct from the mid-gut.The course of the ciliary currents on the gills and palps is described and the importance of the various selective mechanisms emphasized.Selection appears to be purely quantitative, large particles or mucus masses being rejected and smaller ones accepted.Muscular activity is of great importance in the functioning of both gills and palps. Reversal of cilia has never been seen.Rejected matter is removed from the mantle cavity.Material is sorted in the food caecum in the stomach, larger particles passing into the mid-gut and smaller ones towards the gastric shield and ducts of the digestive diverticula, within the tubules of which there is a constant circulation.The rotation of the style assists in the stirring of matter in the stomach.In the style-sac are cilia, which rotate the style and others which push it into the storuach.In the larva the velum acts as a food collecting organ ; the style lies in an extension of the stomach and rotates rapidly. Material passes freely into the digestive diverticula.In the spat rejective mechanisms are highly developed. The style revolves at a speed of between sixty and seventy revolutions per minute.The tubules of the digestive diverticula are the only place where soluble matter is absorbed, in adult, larvae, or spat.Fine particles are ingested and digested intracellularly in the tubules of the digestive diverticula, the products of digestion carried away by amoebocytes, and useless matter rejected into the lumen.Larger particles are ingested and digested by phagocytes in all parts, the products of digestion being carried to the vesicular connective tissue cells and there stored.Enzymes in the style digest starch and glycogen. The amylase, at pH 5.9, has an optimum temperature of 43'C, and is destroyed atThe optimum medium is pH 5-9. It is inactivated by purification with absolute alcohol or by dialysis, but action is restored on the addition of chlorides or bromides and to a less extent iodides, nitrates, and carbonates, but not with sulphates or fluorides.Sucroclastic enzymes in the digestive diverticula act on starch, glycogen, sucrose, raffinose, maltose, lactose, salicin, and amygdalin, but not on inulin, cellulose, or pentosans.The amylase, at pH 5-5, has an optimum temperature of 44-5, and is destroyed at between 64 and 67. It has an optimum pH of 5-5, and is inactivated after purification or dialysis, action being restored in the presence of chlorides or bromides.There is a weak lipase and protease, the latter has two optima at pH 3-7 and at or above 9-0 ; its action is very slow.The only enzymes free in the stomach are those from the style.There is no evidence of any enzymes free in the gill mucus.There is a powerful complete oxidase system in the style, and a catalase in the digestive diverticula and gonad, and traces in the palps, gills, and muscle.The style is the most acid substance in the gut and the cause of the acidity of the gut.The style is dissolved rapidly in fluid of pH 2-3 and above, but very slowly below that point. It is readily dissolved and reformed in the oyster, its presence depending on the maintenance of the balance between the rate of secretion and the rate of dissolution. Its condition is a valuable indication of the state of metabolism.Glycogen and fat are stored, particularly in the vesicular connective tissue cells, the former furnishing the principal reserve food material.The presence of abundant supplies of microscopic plant life rich in carbohydrates provides ideal food for the oyster, and represents optimum conditions for fattening and reproduction.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Reference79 articles.

1. The Food of the Oyster, Clam, and Eibbed Mussel. Rep;Lotsy;U.S.F.C.,1893

2. Food of the Oyster

3. Über die Rolle der Kiemen und Mundlappen der heimischen Süsswassermusciieln bei der Ernähmng;Gorka;Alatt. Kozlem Budapest,1916

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3