The relationship between temperature, oxygen condition and embryo encapsulation in the marine gastropodChorus giganteus

Author:

Cancino Juan M.,Gallardo José A.,Brante Antonio

Abstract

Intracapsular oxygen availability is one of the main factors affecting embryo development of marine gastropod species with encapsulation. This is because the low solubility and diffusion rate of O2in water, plus the low oxygen diffusion rate that the capsule wall presents, reduces oxygen inside capsules. In addition, temperature affects embryo development inside capsules through its effect on embryo metabolic rate and oxygen availability. In spite of both factors being highly correlated and that a synergic effect on embryo development may be expected, there are few studies evaluating temperature and intracapsular oxygen availability simultaneously. In this work we evaluated the role of the capsule wall of the marine gastropodChorus giganteusas a barrier for oxygen diffusion and its interaction with temperature affecting intracapsular oxygen availability and embryonic development. For that, we cultivated capsules in seawater at three different temperatures, 9, 12 and 15°C, for a time to complete embryo development. Oxygen level was measured inside capsules with and without embryos, and outside capsules at all temperatures. The number of capsules successfully hatched at the end of the experiment, and early and late embryo mortality were recorded. Finally, we measured embryo metabolic rate at the three different temperatures assayed. We found that embryo mortality and abnormal morphological development were more frequent at higher temperatures. Intracapsular oxygen availability decreases at higher temperatures in capsules with and without embryos. These results may be explained by an increase in the total intracapsular embryo metabolic rate (per capsule) with temperature and an inadequate oxygen diffusion rate from seawater through the capsule wall and intracapsular fluid to the embryonic cells. Our findings suggest that encapsulation is constrained at high temperatures inC. giganetusaffecting significantly its reproductive success. This may have important consequences in a scenario of global warming.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3