Ultrastructural characterization of the adhesive organ ofIdiosepius biserialisandIdiosepius pygmaeus(Mollusca: Cephalopoda)

Author:

Cyran Norbert,Klepal Waltraud,von Byern Janek

Abstract

Water drift and tidal rise make the use of bonding mechanisms beneficial for small benthopelagic or interstitial marine animals. Chemical adhesives for attachment are very common in molluscs; however, only a few cephalopods have glue producing organs. The family Idiosepiidae is characterized by an epithelial adhesive organ (AO) located on the posterior part of the dorsal mantle area. Previous morphological and histological studies described three non-glandular cell types (basal, interstitial and fusiform cells) and three glandular cell types (goblet, columnar and granular cells) containing protein and carbohydrate components. However, these studies provide different information about the nomenclature and characteristics of the cell types. The present ultrastructural analyses and a 3D reconstruction of the AO ofIdiosepius pygmaeusandIdiosepius biserialistherefore serve to investigate the cell distribution, the fine structure of the cells and possible interactions between the cells.We found that basal cells form a continuous cell layer along the basal membrane, overlapped by the other epithelial cells. Embedded in microvilli-covered interstitial cells the glandular cells are more or less evenly distributed within the AO. Goblet and granular cells are solitary glandular cells without conspicuous morphological characteristics, whereas the columnar cells are arranged in dense aggregations of 5–15 cells. Each columnar cell is enclosed by a narrow supporting interstitial cell which contains dense longitudinal filament strands. The secretory process of the cells in the aggregation is synchronized. Each columnar cell aggregate bears approximately two ciliated sensory fusiform cells. The fusiform cells are connected to a neuronal network, aligned along the epithelium base.The results suggest that the bonding system is affected by two secretory cell types (granular and columnar cells). Both are similar in content, synthesis and secretory process but columnar cells are embedded in a particular cell environment. It is unclear in what way this arrangement is associated with the function of the AO. The neurons in several parts of the AO point to a neuronal control of the bonding mechanism. Comparisons with the AO cells of other cephalopods provide no indications for a morphological relationship between the adhesive systems.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Reference28 articles.

1. Adhesive mechanisms in cephalopods: a review

2. ‘Ventral adhesion’ to hard substrates: a thigmotactic response in sepiid cuttlefish (Mollusca, Cephalopoda);von Boletzky;Vie et Milieu,2000

3. Adhesive organs of the gastrotricha

4. Sepiadarium and Idiosepius two new genera of the family of Sepia. With remarks on the two related forms Sepioloidea d'Orb. and Spirula Lmk;Steenstrup;Det Kongelige Danske Videnskabernes Selskabs skrifter Raekke,1881

5. Histochemistry and fine structure of the ectodermal epithelium of the sepiolid squid Euprymna scolopes;Singley;Malacologia,1982

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3