The changing albedo of the Greenland ice sheet: implications for climate modeling

Author:

Nolin Anne W.,Stroeve Julienne

Abstract

Although the snow albedo feedback mechanism has been shown to amplify global warming effects in nearly all models of global climate, it continues to be represented as a simplistic parameterization. Here, we demonstrate how changes in snow-pack energy-balance drive the seasonal fluctuations in snow albedo for the Greenland ice sheet. For a detailed, point-based investigation of the relationship between snowpack energy balance and albedo, two models are coupled together; one that calculates snow grain-size and the other that uses those grain-size data as input to a radiative-transfer code to obtain spectral albedo. These data indicate that in the near-infrared wavelengths, albedo values drop nearly 20%, during a 10 day period during which grain-sizes increased dramatically. Satellite data were used to map monthly changes in albedo over the entire Greenland ice sheet during the spring and summer months. These monthly albedo images indicate albedo reductions of as much as 80% in coastal regions. Even in areas that experience little or no melt, albedo decreases of 10–20% were common. From these results, it is clear that snow albedo parameterizations for climate models must incorporate the dynamics of snowpack energy balance.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a new thermal snow index and its relationship with snow cover indices and snow cover characteristic indices;Arabian Journal of Geosciences;2015-12-17

2. The reflectance and negative polarization of light scattered from snow surfaces with different grain size in backward direction;Journal of Quantitative Spectroscopy and Radiative Transfer;2014-01

3. Snow Cover Area Mapping Using Synthetic Aperture Radar in Manali Watershed of Beas River in the Northwest Himalayas;Journal of the Indian Society of Remote Sensing;2013-05-24

4. Remote Sensing of Glaciers and Ice Sheets;Remote Sensing in Northern Hydrology: Measuring Environmental Change;2013-03-30

5. Estimation of Snow Extent and Snow Properties;Encyclopedia of Hydrological Sciences;2005-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3