Numerical simulation of drifting snow: erosion and deposition models

Author:

Naaim Mohamed,Naaim-Bouvet Florence,Martinez Hugo

Abstract

Earlier works on numerical modelling are analysed. Anderson and Haff (1991) proposed a model using the “splash” function which was defined for cohesionless sand. The Uematsu and others (1989, 1991) and Liston and others (1993,1994) approaches are based on fluid-mechanics conservation laws where the snow is transported and diffused by the air flow. These models consider the saltation layer as a boundary condition.For the flow, and for the suspension, we adopt the same model as that of Uematsu and Liston. For mass exchange between the flow and snow surface, we have developed an erosion–deposition model where mass exchange is defined in relation to flow turbulence, threshold-friction velocity and snow concentration. Our snow-erosion model was calibrated using Takeuchi's(1980) field measurements. The deposition model was tested by comparing numerical results with wind-tunnel ones, for sawdust-accumulation windward and leeward of a solid snow fence with a bottom gap. The numerical results obtained are close to the experimental results. The main results of the various sensitivity experiments are: the leeward accumulation is very sensitive to the ratio (u*/u*t) (it appears for (u*/u*t) close to 1 and disappears for (u*/u*t) > 1.2), the global accumulation produced by the fence increases as (u*/u*t) decreases and the back reaction of particles on turbulence extends slightly the windward accumulation.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3