An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery

Author:

Bamber J. L.,Bindschadler R. A.

Abstract

Recent studies by several groups have indicated that the performance of general circulation models (GCMs) over the ice sheets is severely limited by the relatively low resolution of the models at the margins, where surface slopes are greatest. To provide accurate energy-budget estimates, resolutions of better than 0.5° are desirable, requiring nested or multiple gridding and accurate, high-resolution boundary conditions. Here we present a new, high-resolution (5 km) digital elevation model for the Antarctic ice sheet, derived from radar-altimeter data obtained from the geodetic phase of the satellite, ERS-1. These data have been combined with the revised ice-thickness grid reported in Bamber and Huybrechts (1996) to produce a bed- and surface-elevation dataset for use in regional and global climate and paleo-climaie modelling applications. The real level of spatial detail in the datasets has been examined with the aid of Landsat Thematic Mapper data. Imagery around Ice Stream D, West Antarctica, shows that the revised ice-thickness grid is accurately geolocated, and contains valuable fine-scale topographic detail beyond that available from the cartographic version of the data (Drewry, 1983). The surface topography in the region of the Ross Ice Shelf has been used to illustrate the level of detail in both the vertical and horizontal resolution of (he surface dataset. Laudsat data has also been used to examine features in the surface-elevation data. In particular, the location of the grounding zone, for Ice Streams D and E, derived from the two data sources shows good agreement. The results of this validation underscore the utility of the new datasets for high-resolution modelling, and highlight the limitations of the Folio maps for such applications.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3