Fracture and its Role in Determining Ice Forces on Offshore Structures

Author:

Palmer A.C.,Goodman D. J.,Ashby M. F.,Evans A. G.,Hutchinson J.W.,Ponter A. R. S.

Abstract

One of the most conspicuous phenomena in the Arctic Is the fracture of sea ice. It is scarcely possible to travel far without seeing a variety of fracture forms, produced both by natural processes and by human activity.At strain-rates below about 10−4s−1, deformation is dominated by creep, but at higher strain-rates fracture is much more important. One of the reasons for this is the very low fracture toughness of ice. The movements of ice in contact with offshore structures often induce strain-rates well beyond the level at which fracture begins, and so offshore structures will often operate in the fracture regime, and it is fracture processes which will determine the design loads. We consider the different modes of repeated fracture that will occur, and classify them into distinct mechanisms of crushing, spalling, and radial and circumferential cracking. Experimental and field observations are plotted on a deformation mode map. A theoretical treatment of radial cracking confirms that very low loads can propagate cracks to long distances; these loads are small by comparison with those calculated from theoretical models that treat ice as a plastically-deforming continuum.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3