Seasonal Variations In The Surface Energy Exchanges Over Antarctic Sea Ice and Coastal Waters

Author:

Allison I.,Tivendale C.M.,Akerman G.J.,Tann J.M.,Wills R.H.

Abstract

Seasonal variations in radiative and turbulent fluxes at the surface of, and in the heat transfer within, sea ice are discussed from results of energy balance studies at a site of annual ice cover near Mawson, Antarctica. In mid-summer, the open water gains heat mostly by radiation but by early February the ocean is cooling predominantly by strong turbulent losses, with some radiative heat loss occurring also by March. When an ice cover forms, turbulent fluxes decrease from several 100 W m−2over open water to only 40 w m−2over ice less than 0.2 m thick and even less over thicker ice.Net radiative losses over mature ice in mid-winter are balanced mostly by conduction through the ice cover but with some turbulent heat gain at the surface. By mid-spring, there is a net radiative gain, the turbulent fluxes are again outgoing, and there is little total heat transfer through the ice. At break-out, the albedo increase from ice to open water causes a large increase in the net radiative gain.At the lower boundary of the ice, the oceanic heat flux provides an important contribution. A net advection of heat into the region is shown from temperature profiles in the water under the ice. Salinity changes in the water during the period of ice melt are also discussed.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aircraft Measured Atmospheric Momentum, Heat and Radiation Fluxes Over Arctic Sea Ice;The Polar Oceans and Their Role in Shaping the Global Environment;2013-03-19

2. References;Polar Lows;2003-04-17

3. Conclusions and future research needs;Polar Lows;2003-04-17

4. Forecasting of polar lows;Polar Lows;2003-04-17

5. Numerical simulation;Polar Lows;2003-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3