Abstract
The behavior of Griesgletscher, Switzerland, is studied by application of a numerical model of temperate glacier flow. The analysis addresses the possible danger posed to a hydroelectric dam which is 600 m from the calving terminus of the glacier. Model parameters are adjusted to fit data collected over eleven years. A calving law relating the calving flux to the water depth at the front provides a good fit of the data. Assuming a continuation of the present climate, the terminus is predicted to retreat 200 m over the next forty years, followed by an advance of 150 m lasting several centuries. Numerous experimental climate alterations show that the dam will not be threatened by short-term climatic changes. A long-term mass-balance increase of 0.12 m of ice per year (or a drop of 0.2°C in mean annual air temperature) would be sufficient to fill the reservoir with ice. With an additional increase of 0.07 m of ice per year the terminus would reach the dam. Data from the 1923 and 1850 moraines are used to suggest lower-bound estimates of temperature changes (-0.4 and -0.6°C respectively) during these periods of glacial maxima.
Publisher
International Glaciological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献