An anisotropic flow law for ice-sheet ice and its implications

Author:

Azuma Nobuhiko,Goto-Azuma Kumiko

Abstract

A new flow law for anisotropic polycrystalline ice is presented. The strain-rate tensor is related by a geometrical factor tensor (G) to the stress tensor. The G factor tensor can be obtained front the c-axis fabric data and stress condition. This new flow law describes well the direction-dependent mechanical properties of anisotropic ice which cannot be demonstrated by Glen’s flow law. For example, the new flow law can explain the fact that a strong single-maximum fabric ice, such as Dye 3 Wisconsin ice, can deform several times faster than isotropic ice under horizontal shear but can hardly deform under vertical or horizontal normal stress. We also show that at a deeper part of an ice sheet, where a single-maximum fabric develops, a positive vertical strain rate can be produced with only a horizontal shear stress.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical analysis of an Antarctic ice core—towards an integration of micro- and macrodynamics of polar ice;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2017-02-13

2. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet;Nature Communications;2016-04-29

3. Ice viscosity enhancement in simple shear and uni-axial compression due to crystal rotation;International Journal of Engineering Science;2009-11

4. Creep and recrystallization of large polycrystalline masses. III. Continuum theory of ice sheets;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2006-04-12

5. Development, principles, and applications of automated ice fabric analyzers;Microscopy Research and Technique;2003-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3