The interaction between drifting snow and atmospheric turbulence

Author:

Bintanja Richard

Abstract

This paper presents a modelling study of the influence of suspended snow on turbulence in the atmospheric surface layer. Turbulence is diminished in drifting and blowing snow, since part of the turbulent energy is used to keep the particles in suspension. This decrease in turbulence directly affects the vertical turbulent fluxes of momentum and snow particles (and other scalars), and can effectively be simulated by introducing an appropriate Richardson number to account for the stability effects of the stably stratified air-snow mixture. We use a one-dimensional model of the atmospheric surface layer in which the Reynolds stress and turbulent suspended snow flux are parameterized in terms of their mean vertical gradients (first-order closure). The model calculates steady-state vertical profiles of mean wind speed, suspended snow mass in 16 size classes and stability parameters. Using the model, the influence of snowdrifting on the wind-speed profile is quantified for various values of the initial friction Velocity (which determines the steepness of the initial wind-speed profile). It will be demonstrated why the roughness length appears to increase when snowdrifting occurs. Finally, we present a parameterization of the effects of snowdrifting on atmospheric stability which can be used in data analyses as a first-order approximation.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3