Abstract
AbstractLet Mn be an immersed umbilic-free hypersurface in the (n + 1)-dimensional unit sphere n+1, then Mn is associated with a so-called Möbius metric g, a Möbius second fundamental form B and a Möbius form Φ which are invariants of Mn under the Möbius transformation group of n+1. A classical theorem of Möbius geometry states that Mn (n ≥ 3) is in fact characterized by g and B up to Möbius equivalence. A Möbius isoparametric hypersurface is defined by satisfying two conditions: (1) Φ ≡ 0; (2) All the eigenvalues of B with respect to g are constants. Note that Euclidean isoparametric hyper-surfaces are automatically Möbius isoparametric, whereas the latter are Dupin hypersurfaces.In this paper, we prove that a Möbius isoparametric hypersurface in 4 is either of parallel Möbius second fundamental form or Möbius equivalent to a tube of constant radius over a standard Veronese embedding of ℝP2 into 4. The classification of hypersurfaces in n+1 (n ≥ 2) with parallel Möbius second fundamental form has been accomplished in our previous paper [6]. The present result is a counterpart of Pinkall’s classification for Dupin hypersurfaces in 4 up to Lie equivalence.
Publisher
Cambridge University Press (CUP)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献