Abstract
Let C be a smooth irreducible complete curve of genus g ≥ 2 over an algebraically closed field of characteristic 0. An ample K3 extension of C is a K3 surface with at worst rational double points which contains C in the smooth locus as an ample divisor.In this paper, we prove that all smooth curve of genera. 2 ≤ g ≤ 8 have ample K3 extensions. We use Bertini type lemmas and double coverings to construct ample K3 extensions.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献