Author:
Bonnafé C.,Lehrer G. I.,Michel J.
Abstract
AbstractLet G be a finite reflection group acting in a complex vector space V = ℂr, whose coordinate ring will be denoted by S. Any element γ ∈ GL(V) which normalises G acts on the ring SG of G-invariants. We attach invariants of the coset Gγ to this action, and show that if G′ is a parabolic subgroup of G, also normalised by γ, the invariants attaching to G′γ are essentially the same as those of Gγ. Four applications are given. First, we give a generalisation of a result of Springer-Stembridge which relates the module structures of the coinvariant algebras of G and G′ and secondly, we give a general criterion for an element of Gγ to be regular (in Springer’s sense) in invariant-theoretic terms, and use it to prove that up to a central element, all reflection cosets contain a regular element. Third, we prove the existence in any well-generated group, of analogues of Coxeter elements of the real reflection groups. Finally, we apply the analysis to quotients of G which are themselves reflection groups.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献