On first-passage-time and transition densities for strongly symmetric diffusion processes

Author:

Crescenzo A. Di,Giorno V.,Nobile A. G.,Ricciardi L. M.

Abstract

One dimensional diffusion processes have been increasingly invoked to model a variety of biological, physical and engineering systems subject to random fluctuations (cf., for instance, Blake, I. F. and Lindsey, W. C. [2], Abrahams, J. [1], Giorno, V. et al [10] and references therein). However, usually the knowledge of the ‘free’ transition probability density function (pdf) is not sufficient; one is thus led to the more complicated task of determining transition functions in the presence of preassigned absorbing boundaries, or first-passage-time densities for time-dependent boundaries (see, for instance, Daniels, H. E. [6], [7], Giorno, V. et al. [10]). Such densities are known analytically only in some special instances so that numerical methods have to be implemented in general (cf., for instance, Buono-core, A. et al [3], [4], Giorno, V. et al [11]). The analytical approach becomes particularly effective when the diffusion process exhibits some special features, such as the symmetry of its transition pdf. For instance, in [10] special symmetry conditions on the transition pdf of one-dimensional time-homogeneous diffusion process with natural boundaries are investigated to derive closed form results concerning the transition pdf’s and the first-passage-time pdf for particular time-dependent boundaries. On the other hand, by using the method of images, in [6] Daniels has obtained a closed form expression for the transition pdf of the standard Wiener process in the presence of a particular time-dependent absorbing boundary. It is interesting to remark that such density cannot be obtained via the methods described in [10], even though the considered process exhibits the kind of symmetry discussed therein.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3