Cyclotomic Nazarov-Wenzl Algebras

Author:

Ariki Susumu,Mathas Andrew,Rui Hebing

Abstract

AbstractNazarov [Naz96] introduced an infinite dimensional algebra, which he called the affine Wenzl algebra, in his study of the Brauer algebras. In this paper we study certain “cyclotomic quotients” of these algebras. We construct the irreducible representations of these algebras in the generic case and use this to show that these algebras are free of rank rn(2n−1)!! (when Ω is u-admissible). We next show that these algebras are cellular and give a labelling for the simple modules of the cyclotomic Nazarov-Wenzl algebras over an arbitrary field. In particular, this gives a construction of all of the finite dimensional irreducible modules of the affine Wenzl algebra.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference45 articles.

1. Parvathi M. and Savithri D. , Representations of G-Brauer algebras, Southeast Asian Bull. Math., 26 (2002), 453–468.

2. Wenzl H. , On the structure of Brauer’s centralizer algebras, Ann. of Math., 128 (1988), 173–193.

3. Green J. A. , Polynomial representations of gl n , SLN, 830, Springer-Verlag, New York, 1980.

4. Weyl H. , The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997, Their invariants and representations, Fifteenth printing, Princeton Paperbacks.

5. Rui H. , A criterion on semisimple Brauer algebra, J. Comb. Theory, Ser. A, 111 (2005), 78–88.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the minimal elements in conjugacy classes of the complex reflection group G(r,1,n);Journal of Pure and Applied Algebra;2024-06

2. The nil-Brauer category;Annals of Representation Theory;2023-11-23

3. Representations of cyclotomic oriented Brauer categories;Journal of Pure and Applied Algebra;2023-06

4. Trace forms on the cyclotomic Hecke algebras and cocenters of the cyclotomic Schur algebras;Journal of Pure and Applied Algebra;2023-04

5. Representations of weakly triangular categories;Journal of Algebra;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3