Abstract
AbstractWe show that it is possible to deduce the Calogero-Moser partition of the irreducible representations of the complex reflection groups G(m,d, n) from the corresponding partition for G(m,1,n). This confirms, in the case W = G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-Moser partition to Rouquier families for the corresponding cyclotomic Hecke algebra.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献