Abstract
Let B be a ring and A a subring of B with the common identity element 1. If the residue A-module B/A is inversible as an A-A- bimodule, i.e. B/A ⊗A HomA(B/A, A) ≈ HomA(B/A, A) ⊗A B/A ≈ A, then B is called a quadratic extension of A. In the case where B and A are division rings, this definition coincides with in P. M. Cohn [2]. We can see easily that if B is a Galois extension of A with the Galois group G of order 2, in the sense of [3], and if is a quadratic extension of A. A generalized crossed product Δ(f, A, Φ, G) of a ring A and a group G of order 2, in [4], is also a quadratic extension of A.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Generalized crossed product and Brauer group;Kanzaki;Osaka J. Math.,1968
2. On commutor ring and Galois theory of separable algebras;Kanzaki;Osaka J. Math.,1964
3. On bilinear module and Witt ring over a commutative ring;Kanzaki;Osaka J. Math.,1971
4. Quadratic Extensions of Skew Fields
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis on generalized Clifford algebras;Вестник Самарского государственного технического университета. Серия «Физико-математические науки»;2023
2. Kanzaki’s Generalized Quadratic Spaces and Graded Salingaros Groups;Advances in Applied Clifford Algebras;2020-08-24
3. Discriminants and the monoid of quadratic rings;Pacific Journal of Mathematics;2016-06-22
4. On the Definition of Quadratic Mappings;Advances in Applied Clifford Algebras;2013-10-23
5. Generalized quadratic modules;Afrika Matematika;2011-03-04