Abstract
Let be a mean zero Gaussian random field (n ⋜ 2). We call X Euclidean if the probability law of the increments X(A) − X(B) is invariant under the Euclidean motions. For such an X, the variance of X(A) − X(B) can be expressed in the form r(|A − B|) with a function r(t) on [0, ∞) and the Euclidean distance |A − B|.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献