Abstract
By explicit studying on theta-multipliers (i.e. the multipliers which appear in theta-transformation formulas under general modular substitutions), we can naturally get the reciprocity law of Gauss sums or quadratic residue symbols. This remarkable fact, by Cauchy, Kronecker, Hecke and others, is very classical, but its theoretical meaning has not been sufficiently clear yet.
Publisher
Cambridge University Press (CUP)
Reference8 articles.
1. Erläuterung zu den Fragmenten XXVIII;Dedekind;Ges. Math. Werke, Leipzig,1892
2. �ber die Transformation der Logarithmen der Thetafunktionen
3. Zur analytischen Theorie der Grenzkreisgruppen
4. Topological covering of $SL(2)$ over a local field
5. Zur Theorie der Modulfunktionen;Rademacher;J.f.d. reine u. angew. Math.,1931
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献