Abstract
Let G be a finite group and let p be a fixed prime number. If D is any p-subgroup of G, then the problem whether there exists a p-block with D as its defect group is reduced to whether NG(D)/D possesses a p-block of defect 0. Some necessary or sufficient conditions for a finite group to possess a p-block of defect 0 have been known (Brauer-Fowler [1], Green [3], Ito [4] [5]). In this paper we shall show that the existences of such blocks depend on the multiplicative structures of the p-elements of G. Namely, let p be a prime divisor of p in an algebraic number field which is a splitting one for G, o the ring of p-integers and k = o/p, the residue class field.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. Note on the characters of solvable groups;Itô;ibid,1970
2. On Groups of Even Order
3. Blocks of modular representations
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献