Poincaré Theta Series and Singular Sets of Schottky Groups

Author:

Akaza Tohru

Abstract

In the theory of automorphic functions for a properly discontinuous group G of linear transformations, the Poincaré theta series plays an essential role, since the convergence problem of the series occupies an important part of the theory. This problem was treated by many mathematicians such as Poincaré, Burnside [2], Fricke [4], Myrberg [6], [7] and others. Poincaré proved that the (-2m)-dimensional Poincaré theta series always converges if m is a positive integer greater than 2, and Burnside treated the problem and conjectured that ( -2)-dimensional Poincaré theta series always converges if G is a Schottky group. This conjecture was solved negatively by Myrberg. As is shown later (Theorem A), the convergence of Poincaré theta series gives an information on a metrical property of the singular set of the group.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. On a Class of Automorphic Functions

2. Über die Poincaré’schen Reihen der (— 1)-ten Dimension;Fricke;Dedekind Festschrift,1901

3. Zur Theorie der Konvergenz der Poincaréschen Reihen;Myrberg;Ann. Acad. Sci. Fennicae,1916

4. Über eine specialle Function, welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt;Schottky;Crelle’s J.,1887

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method of automorphic functions for an inverse problem of antiplane elasticity;The Quarterly Journal of Mechanics and Applied Mathematics;2019-02-28

2. Geometric function theory: a modern view of a classical subject;Nonlinearity;2008-08-21

3. Computations in Moduli Spaces;Computational Methods and Function Theory;2007-03-26

4. P-adic theta functions and solutions of the KP hierarchy;Communications in Mathematical Physics;1996-03

5. Dispersion, topological scattering, and self-interference in multiply connected Robertson-Walker cosmologies;International Journal of Theoretical Physics;1994-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3