On the Borel summability of divergent solutions of the heat equation

Author:

Lutz D. A.,Miyake M.,Schäfke R.

Abstract

AbstractIn recent years, the theory of Borel summability or multisummability of divergent power series of one variable has been established and it has been proved that every formal solution of an ordinary differential equation with irregular singular point is multisummable. For partial differential equations the summability problem for divergent solutions has not been studied so well, and in this paper we shall try to develop the Borel summability of divergent solutions of the Cauchy problem of the complex heat equation, since the heat equation is a typical and an important equation where we meet diveregent solutions. In conclusion, the Borel summability of a formal solution is characterized by an analytic continuation property together with its growth condition of Cauchy data to infinity along a stripe domain, and the Borel sum is nothing but the solution given by the integral expression by the heat kernel. We also give new ways to get the heat kernel from the Borel sum by taking a special Cauchy data.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference20 articles.

1. Singular Nonlinear Partial Differential Equations

2. Global and local Goursat problems in a class of holomorphic or partially holomorphic functions

3. Les séries k-sommables et leurs applications;Ramis;Springer Notes in Physics,1980

4. Théorèmes d’indices Gevrey pour les équations différentielles ordinaire;Ramis;Mem. Amer. Math. Soc,1984

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3