On Galois groups of class two extensions over the rational number field

Author:

Shirai Susumu

Abstract

Let Q be the rational number field, K/Q be a maximal Abelian extension whose degree is some power of a prime l, and let f(K) be the conductor of K/Q; if l = 2, let K be complex, and if in addition f(K) ≡ 0 (mod 2), let f(K) ≡ 0 (mod 16). Denote by (K) the Geschlechtermodul of K over Q and by the maximal central l-extension of K/Q contained in the ray class field mod (K) of K. A. Fröhlich [1, Theorem 4] completely determined the Galois group of over Q in purely rational terms. The proof is based on [1, Theorem 3], though he did not write the proof in the case f(K) ≡ 0 (mod 16). Moreover he gave a classification theory of all class two extensions over Q whose degree is a power of l. Hence we know the set of fields of nilpotency class two over Q, because a finite nilpotent group is a direct product of all its Sylow subgroups. But the theory becomes cumbersome, and it is desirable to reconstruct a more elementary one.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algebraic number fields;Journal of Soviet Mathematics;1987-08

2. On the central ideal class group of cyclotomic fields;Nagoya Mathematical Journal;1979-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3