Author:
Kajiwara Joji,Sakai Eiichi
Abstract
As Fuks [3] stated, every domain of holomorphy or meromorphy over Cn is analytically convex in the sense of Hartogs. Oka [6] proved that every domain over Cn analytically convex in the sense of Hartogs is a domain of holomorphy. Therefore a domain of meromorphy over Cn coincides with a domain of holomorphy over Cn.
Publisher
Cambridge University Press (CUP)
Reference8 articles.
1. On the continuation theorem of Levi and the radius of meromorphy;Okuda;Mem. Fac. Sci. Kyushu Univ. (A),1957
2. Ideals of meromorphic functions of several complex variables
3. Levisches Problem und Rungescher Satz f�r Teilgebiete Steinscher Mannigfaltigkeiten
4. Sur les fonctions analytiques de plusieur variables IX: Domaines finis sans point critique intérieur;Oka;Jap. J. Math.,1953
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A parametric Hartogs extension;Annales Polonici Mathematici;2024
2. Domains of holomorphy in Stein spaces;Rendiconti Lincei - Matematica e Applicazioni;2023-07-12
3. Discrete and Continuous Versions of the Continuity Principle;The Journal of Geometric Analysis;2022-06-20
4. Preface to the second edition;Extension of Holomorphic Functions;2020-05-05
5. Levi Extension Theorems for Meromorphic Functions of Weak Type in Infinite Dimension;Complex Analysis and Operator Theory;2016-04-13