Gaussian Measure on a Banach Space and Abstract Winer Measure

Author:

Sato Hiroshi

Abstract

In this paper, we shall show that any Gaussian measure on a separable or reflexive Banach space is an abstract Wiener measure in the sense of L. Gross [1] and, for the proof of that, establish the Radon extensibility of a Gaussian measure on such a Banach space. In addition, we shall give some remarks on the support of an abstract Wiener measure.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topics of Measure Theory on Infinite Dimensional Spaces;Mathematics;2017-08-29

2. Spectral Approximation of the IMSE Criterion for Optimal Designs in Kernel-Based Interpolation Models;SIAM/ASA Journal on Uncertainty Quantification;2014-01

3. On seminorms and probabilities, and abstract Wiener spaces;Selected Works of R.M. Dudley;2010

4. Gaussian measures on linear spaces;Journal of Mathematical Sciences;1996-04

5. Probabilistic representations of solutions of parabolic equations and systems;Measures and Differential Equations in Infinite-Dimensional Space;1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3